
Several previous notes [1–5] were dedicated to the

fractals intervention in describing the reactions of the

thermal decomposition of solids of the general form:

A B Cs s g→ +

In the kinetic equations derived by taking into

consideration nucleation and nuclei growth, the

fractal character of the new phase nuclei was intro-

duced. In this note a higher generality of the gas phase

or liquid phase nucleation fractal treatment is sug-

gested. This treatment enables to describe, in princi-

ple, besides the generation of the solid product from

gas phase reactants, crystallization from liquids and

solutions and precipitation [6].

For the quantitative treatment the bulk disap-

pearance of the potential nuclei which turn into real

ones should be considered. Besides one has to take

into account that potential nuclei can disappear due to

the surface reaction as they could be incorporated by

the growing nuclei [6]. One has to mention that nucle-

ation can be normal or it can occur according to a

branched chain mechanism.

For the dependence α(t) where α is the degree

of conversion, actually for the integral kinetic equa-

tion the following equation:

[ ]α γ ϑ α ϑ ϑϑ( ) ) ( , ) – ( )t t v t= ∫ (d / d d

0

t

g 1 (1)

where γ represents the concentration of the nuclei,

(dγ/dt)ϑ the specific rate of nuclei generation and

v(t,θ) the volume of a nucleus at the moment t, which

began to grow at the moment ϑ given by:

v k tg i

p p= ϕ ϑ( – ) (2)

where p equals 1, 2, or 3 for uni-, bi- or tridimensional

nuclei and ϕ is a factor which depends on the nuclei

shape and the way the constant kI (rate constant of the

growth) is expressed.

For the generation of nuclei without ramifica-

tion the nucleation rate takes the simple form:

dγ/dt=ktq (3)

Taking into account relations (2) and (3), equa-

tion (1) becomes:.

[ ]α ϑ ϑ α ϑ ϑ( ) ( – ) – ( )t t= ∫A d
q

0

t
p

1 (4)

where

A i

p= ϕk k (5)

If the nucleation occurs with ramification, then

where dγp/dt represents the primary rate of nucleation

and gs is the secondary rate of nucleation.

g
G

t
s

sd

d
= (7)

Gs being the secondary number of nuclei.

With the substitution:

B t
g t

t

s( ) –
( )

/
=1

d dpγ
(8)

relation (6) takes the form:
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[ ]α ϑ ϑ ϑ α ϑ ϑ( ) ( – ) – ( ) ( )t t B= ∫A d
q

0

t
p

1 (9)

For integer values of p the literature indicates so-

lutions of Eq. (9) based on the Laplace transform and

series development [6]. Due to the fractal character of

the nuclei, the exponent p could take fractional values

too. In the following an attempt to solve Eq. (9) for in-

teger and fractional values of p is presented.

In order to arrive at the general solution of the

equation of Voltera type (9) we suggest the following

operations [7]:

We introduce the notation:

α ϑ ϑ
( )

!– ( )= Φ
B

(10)

Under such conditions from Eq. (9) we get:

1 – ( )
( – ) ( )

Φ Φt

B
A t= ∫ ϑ ϑ ϑ ϑq

0

t
p

d (11)

or

Φ Φ( ) – ( – ) ( )t AB t= ∫1 ϑ ϑ ϑ ϑq

0

t
p

d (12)

The notation:

Λ = –AB (13)

turns the solution of equation (12) in an obvious ana-

lytical function of Λ.

Φ Λ Φ( ) ( – ) ( )t t= + ∫1 ϑ ϑ ϑ ϑq

0

t
p

d (14)

and

Φ Λ Φ( ) = k

k

k= 0

t t( )
∞

∑ (15)

Equation (14),t aking into account the develop-

ment (15) takes the form:

Λ Φ Λ Λ Φk

k

k= 0

q p k

k

k= 00

t

d( ) ( – ) ( )t t
∞ ∞

∑ ∑∫= +1 ϑ ϑ ϑ ϑ (16)

Thus Φ 0 1= and

Φ Φk

q

0

t
p

k–1 d( ) ( – ) ( )t t= ∫ ϑ ϑ ϑ ϑ (17)

The recurrence relations (17) permit an effective

calculation of the values of Φ k ( )t

Φ ΦΦ
1

q

0

t
p

0d( ) ( – )t t= ∫ ϑ ϑ ϑ (18)

or

Φ 1

q

0

t
p
d( ) ( – )t t= ∫ ϑ ϑ ϑ (19)

The substitution

ϑ=tξ (20)

turns Eq. (18) into:

Φ 1

p+ q+ 1 q

0

1
p

p+ q+!

d

( +1, +1)

( ) ( – )t t t

t B p q

= ∫ ξ ξ ξ =

=

(21)

where

B p q
p q

p q
( +1, +1) =

( +1) ( +1)Γ Γ
Γ( )+ + 2

(22)

Γ(x) being the Euler function of the second kind.

Γ( ) –x t t=
∞

∫ e d–t x 1

0

(23)

Similarly
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0
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= + +

∫
+ +
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t
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t
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0

0
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∫

∫

=

= + +B p q t d, ) ( –

(24)

Through substitution (20) we get:

Φ 2

2

0

1 1

1

( ) , )

( – )

t B p q t

t

B p

= + +

= +

+ +

∫

(

d

(

(p q 1)

p+ 2q+ 1 p
1

ξ ξ ξ =

, ) , )q t B p q p+ + + ++ +
1 12 2

2(p q 1)
(

(25)

or

[ ]
Φ 2

2
1 1

12 1

( ) , )

, ( )

t t B p q

B p q p

= + +

+ + +

+ +(p q 1)
(

(26)

By the same procedure, for a given k we get:
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Φ Φ3 2

0

1 1 12 1( ) ( – ) ( , ) ( , ( ) )t t t B p q B p q p= + + + + +∫ ϑ ϑ ) =

ϑ

q p
t

2

(

p+ 2+ 3q p
t
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d (( – , ) ( , ( )

( )
t t B p q B p qϑ) ϑ

0

3
1 1 12 1∫ = + + + + ++ +

p B p q p) ( , ( ) )+ + +13 1 2

(27)



or

Φ Γ Γ Γ
Γ Γ

k

k p q 1
k
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p q q p
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Γ

Γ
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Taking into account (15), the general solution

for Φ(t) is:

Correspondingly, according to (10) and (11),

Φ

Γ Γ
Γ
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+ +
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For q=0 and p∈R+
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Γ
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Φ Γ
Γ

Γ
Γ

2

2

1

2

1

2

( )
( )

( )
( – )

( )

( )

t
p

p
t d

p

p
t

= +
+

=

= +
+

∫ ϑ ϑ ϑp+ 1 p

0

t

p+

+

+ + =

= +
+

+ +
+

2

2 2

1 2

1

2

1 2

2 3

B p p

t
p

p

p p

p

( , )

( )

( )

( ) ( )

( )

p Γ
Γ

Γ Γ
Γ

=

= +
+

+
t

p

p

2 2
2 1

2 3

p Γ
Γ

( )

( )

(32)

After k–1 iterations we get:

Φ Γ
Γ

k

k p 1
k

( )
( )

( )

( )
t t

p

kp k
= +

+ +
+ 1

1
(33)

and the general solution of α(t)takes the form:

α( )
( ) ( )

( )
t

B

ABt p

kp k
= +

+ +

=∞ +

∑1 1

1

1

(–1)k+ 1

k= 1

k p k kΓ
Γ

(34)

Conclusion

A fractal approach for the for the nucleation in the liquid

or gas volume of the reactants was considered. The ob-

tained formulae for a(t) where a is the degree of conver-

sion can be used for working the kinetic data.
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By the same procedure, for a given k we get:

Φ k ( ) ( , ) ( , ( ) )... ( ,
( )

t t B p q B p q p B p k
k p q= + + + + + ++ +1

1 1 12 1 1 ( ) ( ) )q k p

t

+ + − =

=
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+ +
+

1 1
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(p 1Γ
Γ
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